题目内容

如图,已知AB是⊙O的弦,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长,CO交⊙O于点D,连接AD.若∠B=30°,∠D=20°,则∠BOD的度数为
100°
100°
分析:由三角形外角的性质,可得:∠BOD=∠B+∠BCO,∠BCO=∠A+∠D.又由圆周角定理,可得:2∠A=∠B+∠A+∠D=∠A+50°,则可求得∠A的度数,继而求得答案.
解答:解:∵∠BOD=∠B+∠BCO,∠BCO=∠A+∠D.
∴∠BOD=∠B+∠A+∠D,
又∵∠BOD=2∠A,∠B=30°,∠D=20°,
∴2∠A=∠B+∠A+∠D=∠A+50°,
解得:∠A=50°,
∴∠BOD=2∠A=100°.
故答案为:100°.
点评:此题考查了圆周角定理以及三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网