题目内容
如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为
- A.

- B.4
- C.

- D.

B
分析:先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△CDA,利用全等三角形对应边相等就可得到答案.
解答:
∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEB=∠ADC=90°,
∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,
∵∠AFE=∠BFD,
∴∠EAF=∠FBD,
∵∠ADB=90°,∠ABC=45°,
∴∠BAD=45°=∠ABC,
∴AD=BD,
在△ADC和△BDF中
,
∴△ADC≌△BDF,
∴DF=CD=4,
故选:B.
点评:此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.
分析:先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△CDA,利用全等三角形对应边相等就可得到答案.
解答:
∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEB=∠ADC=90°,
∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,
∵∠AFE=∠BFD,
∴∠EAF=∠FBD,
∵∠ADB=90°,∠ABC=45°,
∴∠BAD=45°=∠ABC,
∴AD=BD,
在△ADC和△BDF中
∴△ADC≌△BDF,
∴DF=CD=4,
故选:B.
点评:此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.
练习册系列答案
相关题目