题目内容
已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.
(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB'E'(如图2),使点E落在CD边
上的点E'处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
⑴证明:∵正方形ABCD中,∠ABE=∠BCF=900 ,AB=BC,
∴∠ABF+∠CBF=900,
∵AE⊥BF,
∴∠ABF+∠BAE=900,
∴∠BAE=∠CBF,
∴△ABE≌△BCF.
⑵解:∵正方形面积为3,∴AB=
,
在△BGE与△ABE中, ∵∠GBE=∠BAE, ∠EGB=∠EBA=900
∴△BGE∽△ABE
∴
,又BE=1,∴AE2=AB2+BE2=3+1=4
∴
=
=
.
(用其他方法解答仿上步骤给分).
⑶解:没有变化 ∵AB=
,BE=1,∴tan∠BAE=
,
∠BAE=30°,
∵AB′=AD,∠AB′E′=∠ADE'=90°,AE′公共,
∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,
∴∠DAE′=∠B′AE′=∠BAE=30°,
∴AB′与AE在同一直线上,即BF与AB′的交点是G,
设BF与AE′的交点为H,
则∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共,
∴△BAG≌△HAG,
∴
=
=
=
.
∴△ABE在旋转前后与△BCF重叠部分的面积没有变化.