题目内容
求值: , ,求 的值.
如图,在平面直角坐标系中, , ,一次函数与线段有公共点,则的取值范围是( )
A. B. C. D.
感知:如图①,四边形ABCD、CEFG均为正方形.易知BE=DG.
探究:如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
应用:如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD的延长线上.若AE=3ED, ∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为 .
如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF的周长为( )
A. 14 B. 15 C. 16 D. 17
某综合实践小组为了了解本校学生参加课外读书活动的情况,随机抽取部分学生,调查其最喜欢的图书类别,并根据调查结果绘制成如下不完整的统计表与统计图:
请结合图中的信息解答下列问题:
(1)随机抽取的样本容量a为 ;
(2)补全扇形统计图和条形统计图;
(3)已知该校有600名学生,估计全校最喜欢文学类图书的学生有 人.
杨辉是我国南宋时期杰出的数学家和教育家,下图是杨辉在公元1261年著作《详解九章算法》里面的一张图,即“杨辉三角”,该图中有很多规律,请仔细观察,解答下列问题:
(1)图中给出了七行数字,根据构成规律,第8行中从左边数第3个数是_____;
(2)利用不完全归纳法探索出第n行中的所有数字之和为_____________.
如图,四边形ABCD,E是CB延长线上一点,下列推理正确的是
A. 如果∠1=∠2 ,那么AB∥CD
B. 如果∠3=∠4 ,那么 AD∥BC
C. 如果AD∥BC,那么∠6+∠BAD=180°.
D. 如果∠6+∠BCD=180°,那么AD∥BC
如图,在每个小正方形的边长为I的网格中,点A,B,C,D均在格点上,点E在线段BC上,F是线段DB的中点,且BE=DF,则AF的长等于_____,AE的长等于_____.
在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.
(1)如图1,若四边形ABCD是正方形.
①求证:△AOC1≌△BOD1.
②请直接写出AC1 与BD1的位置关系.
(2)如图2,若四边形ABCD是菱形,AC=6,BD=8,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.
(3)如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1,设AC1=kBD1.直接写出k的值和AC12+(kDD1)2的值.