题目内容
将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是_____.
已知某物体的三视图如图所示,那么与它对应的物体是
A. B. C. D.
如图,在中,,,以AB中点D为圆心,作圆心角为的扇形DEF,点C恰好在弧EF上,则图中阴影部分面积为______.
如图,一架5米长的梯子AB斜靠在一面墙上,梯子底端B到墙底的垂直距离BC为3米.
(1)求这个梯子的顶端A到地面的距离AC的值;
(2)如果梯子的顶端A沿墙AC竖直下滑1米到点D处,求梯子的底端B在水平方向滑动了多少米?
计算:(+)×﹣4
如图,在平行四边形ABCD中,∠A=40°,则∠C大小为( )
A. 40° B. 80° C. 140° D. 180°
如图在平面直角坐标系中顶点为点M的抛物线是由抛物线向右平移1个单位得到的,它与y轴负半轴交于点A,点B在抛物线上,且横坐标为3.
写出以M为顶点的抛物线解析式.
连接AB,AM,BM,求;
点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为,当时,求点P坐标.
如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )
A. B.
C. D.
某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工,每人每天只能做一项工作,若采摘蔬菜,每人每天平均采摘48kg;若对当日采摘的蔬菜进行精加工,每人每天可精加工每天精加工的蔬菜和没来得及精加工的蔬菜全部售出已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元,设每天安排x名工人进行蔬菜精加工.
求每天蔬菜精加工后再出售所得利润元与人的函数关系式;
如何安排精加工人数才能使一天所获的利润最大,最大利润是多少?