题目内容
数学符号体现了数学的简洁美.如12+22+32+…+992+1002可记为
n2,又如
=
+
+…+
+
.设A=
,那么与A最接近的整数是( )
| 100 |
| n=1 |
| 10 |
| n=1 |
| n(n+1) |
| 1×2 |
| 2×3 |
| 9×10 |
| 10×11 |
| 2012 |
| n=1 |
1+
|
分析:根据新定义列出算式,然后根据二次根式的性质化简,再裂项计算即可得解.
解答:解:根据题意得:A=
+
+…+
,
∵1+1+
=
,1+
+
=
,1+
+
=
,…,1+
+
=
,
∴A=
+
+
+…+
,
=1+
+1+
+1+
+…1+
,
=2012+
+
+
+…+
,
=2012+1-
+
-
+
-
+
-
,
=2012+1-
,
=2013-
,
∴与A最接近的整数是2013.
故选C.
1+1+
|
1+
|
1+
|
∵1+1+
| 1 |
| 4 |
| 9 |
| 4 |
| 1 |
| 4 |
| 1 |
| 9 |
| 49 |
| 36 |
| 1 |
| 9 |
| 1 |
| 16 |
| 169 |
| 144 |
| 1 |
| 20122 |
| 1 |
| 20132 |
| (2012×2013+1)2 |
| (2012×2013)2 |
∴A=
| 3 |
| 2 |
| 7 |
| 6 |
| 13 |
| 12 |
| 2012×2013+1 |
| 2012×2013 |
=1+
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 2012×2013 |
=2012+
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2012×2013 |
=2012+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2012 |
| 1 |
| 2013 |
=2012+1-
| 1 |
| 2013 |
=2013-
| 1 |
| 2013 |
∴与A最接近的整数是2013.
故选C.
点评:本题考查了二次根式的化简求值,根据前几项的计算规律去掉根号是解题的关键,要注意裂项可是使计算更加简便.
练习册系列答案
相关题目