题目内容
某班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面.你能将旗杆的高度求出来吗?
小明、小敏、小新商量要在毕业前夕给老师办公室的4道窗户剪贴窗花表达大伙的尊师之情,今年是农历鸡年,他们设计了金鸡报晓的剪纸图案。小明说:“我来出一道数学题:把剪4只金鸡的任务分配给3个人,每人至少1只,有多少种分配方法?”小敏想了想说:“设各人的任务为x、y、z,可以列出方程x+y+z=4。”小新接着说:“那么问题就成了问这个方程有几个正整数解。”现在请你说说看:这个方程正整数解的个数是( )
A. 6个 B. 5个 C. 4个 D. 3个
如果一个数的绝对值等于它的相反数,那么这个数是_____.
若(x+4)(x-2)=x2+px+q,则p、q的值是( )
A. 2、-8 B. -2、8 C. -2、-8 D. 2、8
估计+1的值( )
A. 在1和2之间 B. 在2和3之间
C. 在3和4之间 D. 在4和5之间
如图,在△ABC中,CD平分∠ACB,DE∥AC,∠B=70°,∠EDC=30°,求∠ADC的度数.
已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC = 10 cm,则△ODE的周长________.
如图①:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系。
(1)小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,即可得出BE,EF,FD之间的数量关系,他的结论应是____________。
象上面这样有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等的几何模型称为半角模型。
(2)拓展 如图②,若在四边形ABCD中,,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF=∠BAD,则BE,EF,FD之间的数量关系是________________。
请证明你的结论。
(3)实际应用 如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西35°的A处,舰艇乙在指挥中心南偏东75°的B处,,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为65°,试求此时两舰艇之间的距离是_____________海里 (直接写出答案)。
在矩形中,两条对角线,相交于点,若,则
A. 8 B. 4 C. 8 D. 4