题目内容
如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.
(1)证明:△CBF≌△CDF;
(2)若AC=2
,BD=2,求四边形ABCD的周长;
(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.
![]()
(1)证明:在△ABC和△ADC中,
,
∴△ABC≌△ADC(SSS),
∴∠BCA=∠DCA,
在△CBF和CADF中,
,
∴△CBF≌△CDF(SAS),
(2)解:∵△ABC≌△ADC,
∴△ABC和△ADC是轴对称图形,
∴OB=OD,BD⊥AC,
∵OA=OC,
∴四边形ABCD是菱形,
∴AB=BC=CD=DA,
∵AC=2
,BD=2,
∴OA=
,OB=1,
∴AB=
=
=2,
∴四边形ABCD的周长=4AB=4×2=8.
(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,
理由:∵四边形ABCD为菱形,
∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,
∵△BCF≌△DCF,
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,
∴∠EFD=∠BCD.
下列各数中,绝对值最大的数是( )
|
| A. | ﹣3 | B. | ﹣2 | C. | 0 | D. | 1 |
下列运算正确的是( )
|
| A. | a2+a3=a5 | B. | (﹣2a2)3=﹣6a6 | C. | (2a+1)(2a﹣1)=2a2﹣1 | D. | (2a3﹣a2)÷a2=2a﹣1 |
如图1,将一个边长为a的
正方形纸片剪去两个小矩形,得到一个“
”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )
![]()
|
| A. | 2a﹣3b | B. | 4a﹣8b | C. | 2a﹣4b | D. | 4a﹣10b |
如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( )
![]()
|
| A. | 10° | B. | 15° | C. | 20° | D. | 25° |