题目内容
如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.
(1)若∠B=35°,∠ACB=85°,求∠E的度数;
(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.

解:(1)∵∠B=35°,∠ACB=85°,
∴∠BAC=60°,
∵AD平分∠BAC,
∴∠DAC=30°,
∴∠ADC=65°,
∴∠E=25°;
(2)
.
设∠B=n°,∠ACB=m°,
∵AD平分∠BAC,
∴∠1=∠2=
∠BAC,
∵∠B+∠ACB+∠BAC=180°,
∵∠B=n°,∠ACB=m°,
∴∠CAB=(180-n-m)°,
∴∠BAD=
(180-n-m)°,
∴∠3=∠B+∠1=n°+
(180-n-m)°=90°+
n°-
m°,
∵PE⊥AD,
∴∠DPE=90°,
∴∠E=90°-(90°+
n°-
m°)=
(m-n)°=
(∠ACB-∠B).
分析:(1)中,首先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;
(2)中,根据第(1)小题的思路即可推导这些角之间的关系.
点评:运用了三角形的内角和定理以及角平分线的定义.特别注意第(2)小题,由于∠B和∠ACB的大小不确定,故表达式应写为两种情况.
∴∠BAC=60°,
∵AD平分∠BAC,
∴∠DAC=30°,
∴∠ADC=65°,
∴∠E=25°;
(2)
设∠B=n°,∠ACB=m°,
∵AD平分∠BAC,
∴∠1=∠2=
∵∠B+∠ACB+∠BAC=180°,
∵∠B=n°,∠ACB=m°,
∴∠CAB=(180-n-m)°,
∴∠BAD=
∴∠3=∠B+∠1=n°+
∵PE⊥AD,
∴∠DPE=90°,
∴∠E=90°-(90°+
分析:(1)中,首先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;
(2)中,根据第(1)小题的思路即可推导这些角之间的关系.
点评:运用了三角形的内角和定理以及角平分线的定义.特别注意第(2)小题,由于∠B和∠ACB的大小不确定,故表达式应写为两种情况.
练习册系列答案
相关题目