题目内容
某物体的三视图如图所示,则该物体的形状是( )
A. 正方体 B. 长方体 C. 圆柱体 D. 球体
在□ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.
(1)求证:四边形EHFG是平行四边形;
(2)□ABCD应满足什么条件时,四边形EHFG是矩形?并说明理由;
(3)□ABCD应满足什么条件时,四边形EHFG是正方形?(不要说明理由).
如图,菱形ABCD中,∠D=135°,AD=6,CE=2,点P是线段AC上一动点,点F是线段AB上一动点,则PE+PF的最小值是( )
A. 3 B. 6 C. 2 D. 3
有3个完全相同的小球,把它们分别标号为2,3,6,放在一个不透明的口袋中.从口袋中随机摸出两个小球.用画树状图(或列表)的方法,求摸出的两个小球均能被3整除的概率.
分解因式:___________.
阅读下列材料,解决后面两个问题:
一个能被17整除的自然数我们称为“灵动数”.“灵动数”的特征是:若把一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的整倍数(包括0),则原数能被17整除.如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾、倍大、相减、验差”的过程,直到能清楚判断为止.
例如:判断1675282能不能被17整除. 167528﹣2×5=167518,16751﹣8×5=16711,1671﹣1×5=1666,166﹣6×5=136,到这里如果你仍然观察不出来,就继续…6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30﹣13=17,17÷17=1;所以1675282能被17整除.
(1)请用上述方法判断7242和2098754 是否是“灵动数”,并说明理由;
(2)已知一个四位整数可表示为,其中个位上的数字为n,十位上的数字为m,0≤m≤9,0≤n≤9且m,n为整数.若这个数能被51整除,请求出这个数.
“欢乐跑中国•重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门,3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y(千米)与小刚跑步所用时间x(分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了__分钟.
对于平面直角坐标系中的图形,,给出如下定义:为图形上任意一点,为图形上任意一点,如果,两点间的距离有最小值,那么称这个最小值为图形,间的“闭距离”,记作(,).
已知点(,6),(,),(6,).
(1)求(点,);
(2)记函数(,)的图象为图形,若(,),直接写出的取值范围;
(3)的圆心为(t,0),半径为1.若(,),直接写出t的取值范围.
由若干根火柴恰好可拼成如图所示的n列正方形(每列2个),若图中的火柴总根数为y 根,则y=__________.(用含n的代数式表示)