题目内容
| AB |
| a |
| BC |
| b |
| AD |
| a |
| 1 |
| 2 |
| b |
| a |
| 1 |
| 2 |
| b |
| a |
| b |
分析:由在△ABC中,AB=AC,AD⊥BC,根据三线合一的性质可得:
=
=
,然后由三角形法则,求得答案.
| BD |
| 1 |
| 2 |
| BC |
| 1 |
| 2 |
| b |
解答:解:∵在△ABC中,AB=AC,AD⊥BC,
∴
=
=
,
∵
=
,
∴
=
+
=
+
.
故答案为:
+
.
∴
| BD |
| 1 |
| 2 |
| BC |
| 1 |
| 2 |
| b |
∵
| AB |
| a |
∴
| AD |
| AB |
| BD |
| a |
| 1 |
| 2 |
| b |
故答案为:
| a |
| 1 |
| 2 |
| b |
点评:此题考查了平面向量的知识以及等腰三角形的性质.此题难度适中,注意掌握三角形法则的应用.
练习册系列答案
相关题目