题目内容

如图,在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m. 
(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.当点D在这条抛物线的对称轴上时,求点D的坐标.
考点:二次函数综合题
专题:
分析:(1)将A(-1,0)、B(4,0)两点的坐标代入y=ax2+bx-2,运用待定系数法即可求出抛物线的解析式;
(2)先根据等腰直角三角形的性质求出点C的坐标为(m,2),再将C的坐标代入y=
1
2
x2-
3
2
x-2,即可求出m的值;
(3)先由旋转的性质得出点D的坐标为(m,-2),再根据二次函数的性质求出抛物线y=
1
2
x2-
3
2
x-2的对称轴为直线x=
3
2
,然后根据点D在直线x=
3
2
上,即可求出点D的坐标;
解答:解:(1)∵抛物线经过点A(-1,0)、B(4,0),
a-b-2=0
16a+4b-2=0.

解得
a=
1
2
b=-
3
2
.

∴抛物线所对应的函数关系式为y=
1
2
x2-
3
2
x-2;

(2)∵△CMN是等腰直角三角形CMN,∠CMN=90°,
∴CM=MN=2,
∴点C的坐标为(m,2),
∵点C(m,2)在抛物线上,
1
2
m2-
3
2
m-2=2,
解得m1=
3+
41
2
,m2=
3-
41
2

∴点C在这条抛物线上时,m的值为
3+
41
2
3-
41
2


(3)∵将线段CN绕点N逆时针旋转90°后,得到对应线段DN,
∴∠CND=90°,DN=CN=
2
CM=
2
MN,
∴CD=
2
CN=2CM=2MN,
∴DM=CM=MN,∠DMN=90°,
∴点D的坐标为(m,-2).
又∵抛物线y=
1
2
x2-
3
2
x-2的对称轴为直线x=
3
2
,点D在这条抛物线的对称轴上,
∴点D的坐标为(
3
2
,-2);
点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,旋转的性质等知识,综合性较强,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网