题目内容
一等边三角形周长为6,则面积为________.
分析:根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.
解答:
∴D为BC的中点,
∴BD=DC=1,
在Rt△ABD中,AB=2,BD=1,
∴AD=
故等边三角形面积为
故答案为:
点评:本题考查了等边三角形三线合一的性质,勾股定理在直角三角形中的运用,三角形面积的计算,本题中根据勾股定理计算AD的长是解题的关键.
练习册系列答案
相关题目