题目内容
如图,在四边形ABCD中,∠B=120°,∠D=50°,将∠C向内折出一个△PRC′,恰好使C′P∥AB,C′R∥AD,则∠C的度数是( )
A.80° B.85° C.95° D.110°
2016的相反数是( )
A. B.-2016 C.- D.2016
如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( )
A.25° B.30° C.35° D.40°
如图①所示正三角形纸板的边长为1,周长记为P1,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记第n(n≥3)块纸板的周长为Pn,则Pn-Pn-1= (用含n的代数式表示).
如图,在平面直角坐标系中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为( )
A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)
已知抛物线C1:y=ax2+bx+(a≠0)经过点A(-1,0)和B(3,0).
(1)求抛物线C1的解析式,并写出其顶点C的坐标;
(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;
(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:
①tan∠ENM的值如何变化?请说明理由;
②点M到达点C时,直接写出点P经过的路线长.
解方程:.
下列计算正确的是( )
A.-x3+3x3=2x3 B.x+x=x2 C.x3+2x5=3x3 D.x5-x4=x
如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为 .