题目内容
(3分)(2015•佛山)各边长度都是整数、最大边长为8的三角形共有 个.
如图,在⊙O中,∠ABC=130°,则∠AOC等于( )
A.50° B.80° C.90° D.100°
在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形,若线段EF的中点为点M,则线段AM的长为 .
下列运算正确的是( )
(A)
(B)
(C)
(D)
(6分)(2015•佛山)如图,在水平地面上竖立着一面墙AB,墙外有一盏路灯D.光线DC恰好通过墙的最高点B,且与地面形成37°角.墙在灯光下的影子为线段AC,并测得AC=5.5米.
(1)求墙AB的高度(结果精确到0.1米);(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)
(2)如果要缩短影子AC的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.
(3分)(2015•佛山)下列给出5个命题:
①对角线互相垂直且相等的四边形是正方形
②六边形的内角和等于720°
③相等的圆心角所对的弧相等
④顺次连接菱形各边中点所得的四边形是矩形[来^源#:%中教&@网]
⑤三角形的内心到三角形三个顶点的距离相等.
其中正确命题的个数是( )
A.2个 B.3个 C.4个 D.5个
(3分)(2015•佛山)下列计算正确的是( )
A.x+y=xy B.﹣y2﹣y2=0 C.a2÷a2=1 D.7x﹣5x=2
(4分)(2015•泉州)方程x2=2的解是 .
(本题满分12分)如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O、C两点做抛物线y1=ax(x-t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)
(1)填空:用含t的代数式表示点A的坐标及k的值A ,k= ;
(2)随着三角板的滑动,当a=时:
①请你验证:抛物线y1=ax(x-t)的顶点在函数y=-x2的图象上;
②当三角板滑至点E为AB的中点时,求t的值;
(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.