题目内容

已知⊙O的半径为5,由直径AB的端点B作⊙O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为________,此函数的最大值是________,最小值是________.

AP+2PM=x+=-+20,(0<x<10)        不存在
分析:先连接BP,AB是直径,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,
于是PM:PB=PB:AB,可求PM==,从而有AP+2PM=x+=-x2+x+20(0<x<10),再根据二次函数的性质,可求函数的最大值.
解答:解:如图所示,连接PB,
∵∠PBM=∠BAP,∠BMP=∠APB=90°,
∴△PMB∽△PAB,
∴PM:PB=PB:AB,
∴PM==
∴AP+2PM=x+=-x2+x+20(0<x<10),
∵a=-<0,
∴AP+2PM有最大值,没有最小值,
∴y最大值==
故答案为:AP+2PM=x+=-x2+x+20(0<x<10),,不存在.
点评:本题考查了相似三角形的判定和性质、圆中直径所对的圆周角等于90°、求二次函数的最大值、弦切角定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网