题目内容
(1)求证:AB=AC;
(2)若连接AP并延长,请问AP与BC有什么样的关系?并说明理由.
考点:全等三角形的判定与性质,线段垂直平分线的性质
专题:
分析:(1)直接证明△DBC≌△ECB即可证得结论;
(2)先证明AB=AC,BP=CP,根据到线段两端点距离相等的点在线段垂直平分线上可得AF垂直平分BC.
(2)先证明AB=AC,BP=CP,根据到线段两端点距离相等的点在线段垂直平分线上可得AF垂直平分BC.
解答:(1)证明:∵CD⊥AB于点D,BE⊥AC于点E,
在Rt△DBC和Rt△ECB中,
,
∴Rt△DBC≌Rt△ECB(HL),
∴∠ABC=∠ACB
∴AB=AC;
(2)AP垂直平分BC.
证明:如图,连接AP并延长与BC交于点F,
∵△BCD≌△CBE,
∴∠CBD=∠BCE,∠BCD=∠CBE,
∴AB=AC,BP=CP,
∴AP垂直平分BC(到线段两端点距离相等的点在线段垂直平分线上).
在Rt△DBC和Rt△ECB中,
|
∴Rt△DBC≌Rt△ECB(HL),
∴∠ABC=∠ACB
∴AB=AC;
(2)AP垂直平分BC.
证明:如图,连接AP并延长与BC交于点F,
∵△BCD≌△CBE,
∴∠CBD=∠BCE,∠BCD=∠CBE,
∴AB=AC,BP=CP,
∴AP垂直平分BC(到线段两端点距离相等的点在线段垂直平分线上).
点评:本题考查了全等三角形的判定,到角的两边距离相等的点在角的平分线上的判定,熟练掌握全等三角形的判定方法是解题的关键.
练习册系列答案
相关题目
已知x,y满足x≥y≥1且2x2-xy-5x+y+4=0,则x+y的值( )
| A、有最小值5 | B、值为5 |
| C、值为4 | D、不能确定 |
| A、不存在 | B、6 | C、8 | D、9 |
要使分式
的值为0,则x应该等于( )
| x2+5x+4 |
| x+4 |
| A、-4或-1 | B、-4 |
| C、-1 | D、4或1 |