题目内容

【题目】如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD与点E,CG⊥AD于点G.

(1)求证:GC是⊙F的切线;
(2)填空:①若△BCF的面积为15,则△BDA的面积为
②当∠GCD的度数为时,四边形EFCD是菱形.

【答案】
(1)证明:∵AB=AD,FB=FC,

∴∠B=∠D,∠B=∠BCF,

∴∠D=∠BCF,

∴CF∥AD,

∵CG⊥AD,

∴CG⊥CF,

∴GC是⊙F的切线


(2)60;30°
【解析】(2)解:①∵CF∥AD,
∴△BCF∽△BDA,
= ,△BCF的面积:△BDA的面积=1:4,
∴△BDA的面积=4△BCF的面积=4×15=60;
所以答案是:60;
②当∠GCD的度数为30°时,四边形EFCD是菱形.理由如下:
∵CG⊥CF,∠GCD=30°,
∴∠FCB=60°,
∵FB=FC,
∴△BCF是等边三角形,
∴∠B=60°,CF=BF= AB,
∵AB=AD,
∴△ABD是等边三角形,CF= AD,
∴∠A=60°,
∵AF=EF,
∴△AEF是等边三角形,
∴AE=AF= AB= AD,
∴CF=DE,
又∵CF∥AD,
∴四边形EFCD是平行四边形,
∵CF=EF,
∴四边形EFCD是菱形;
所以答案是:30°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网