题目内容

阅读材料

如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.

解决问题

(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;

(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;

(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出的值(用含α的式子表示出来)

(1)猜想:BF=CD.理由见解析; (2)(1)中的结论不成立,理由见解析; (3)=tan. 【解析】试题分析:(1)如答图②所示,连接OC、OD,证明△BOF≌△COD; (2)如答图③所示,连接OC、OD,证明△BOF∽△COD,相似比为; (3)如答图④所示,连接OC、OD,证明△BOF∽△COD,相似比为tan. 试题解析:(1)猜想:BF=CD.理...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网