题目内容

如图,在△ABC中,BE是∠ABC的内角平分线,CE是∠ACB的外角平分线,BE、CE交于E点,试探究∠E与∠A的大小关系.

解:∠E=∠A
证明:∵∠ACD=∠A+∠ABC,CE平分∠ACD,
∴∠ECD=∠ACD=(∠A+∠ABC)(角平分线的定义),
∵BE平分∠ABC,
∴∠EBC=∠ABC(角平分线的定义),
∵∠ECD是△BCE的外角,
∴∠E=∠ECD-∠EBC=∠A.
分析:先根据三角形外角的性质及角平分线的定义得出∠ACD=∠A+∠ABC,∠ECD=∠ACD=(∠A+∠ABC),再由BE平分∠ABC可知∠EBC=∠ABC,根据∠ECD是△BCE的外角即可得出结论.
点评:本题考查的是三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网