题目内容
已知40°的圆心角所对应的扇形面积为π cm2,则这个扇形所在圆的直径为
A. 2 cm B. 4 cm C. 8 cm D. 16 cm
如图,在矩形ABCD中,BC=8,CD=6,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则△BDE的面积为( )
A. B. C. 24 D. 21
在早餐店里,王伯伯买5个馒头,3个包子,老板少收2元,只要5元;李太太买了11个馒头,5个包子,老板以售价的九折优惠,只要9元.若设馒头每个x元,包子每个y元,则下列哪一个二元一次方程组可表示题目中的数量关系?( )
A. B.
C. D.
计算: .
函数中,自变量的取值范围是_______________.
如图,在Rt△ABC中, 点P从点A出发,沿折线AB-BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动.动点Q从点C出发,沿CA方向以每秒个单位长度的速度运动.P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P的运动时间为t秒.
(1)用含t的代数式表示线段AQ的长.
(2)当点P在线段AB上运动时,求PQ与△ABC一边垂直时t的值.
(3)设△APQ的面积为S(S>0),求S与t的函数关系式.
(4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.
为了推动课堂教学改革,打造“高效课堂”,我市某中学对该校八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图,请根据图中提供的信息,回答下列问题:
(1)本次调查的八年级部分学生共有______名;请补全条形统计图;
(2)若该校八年级学生共有540人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?
△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.
(1)观察猜想
如图1,当点D在线段BC上时,
①BC与CF的位置关系为: .
②BC,CD,CF之间的数量关系为: ;(将结论直接写在横线上)
(2)数学思考
如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.
如图,下列说法中, ①∠3与∠4是同位角;②∠3与∠C是同位角;③∠3与∠1是内错角;④∠3与∠B是同旁内角;⑤∠3与∠2是邻补角;⑥∠3与∠A互为补角;正确的个数是( )
A. 3个 B. 4个 C. 5个 D. 6个