题目内容
【题目】如图,菱形
中,
分别是
的中点,连接
,则
的周长为( )
![]()
A.
B.
C.
D.![]()
【答案】D
【解析】
首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.
解:∵四边形ABCD是菱形,
∴AB=AD=BC=CD=2cm,∠B=∠D,
∵E、F分别是BC、CD的中点,
∴BE=DF,
在△ABE和△ADF中,
,
∴△ABE≌△ADF(SAS),
∴AE=AF,∠BAE=∠DAF.
连接AC,
∵∠B=∠D=60°,
∴△ABC与△ACD是等边三角形,
∴AE⊥BC,AF⊥CD,
∴∠BAE=∠DAF=30°,
∴∠EAF=60°,BE=
AB=1cm,
∴△AEF是等边三角形,AE=
,
∴周长是
.
故选:D.
![]()
练习册系列答案
相关题目