题目内容
如图,已知反比例函数
和一次函数y=2x-1,其中反比例函数的图象经过点(2,
).
(1)求反比例函数的解析式;
(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;
(3)在(2)的条件下,在x轴上是否存在点P,使△AOP为等腰三角形?若存在,请直接写出所有符合条件的P点坐标;若不存在,请说明理由.
故反比例解析式为y=
(2)联立得:
消去y得:2x-1=
解得:x=-
将x=1代入y=2x-1得:y=1,
则A(1,1);
(3)存在,分三种情况考虑,以O为圆心OA长为半径画弧,与x轴交于点P1,P2,
∵A(1,1),
∴OA=
∴OP1=OP2=
∴点P1(-
以A为圆心,AO长为半径画弧,与x轴交于P3点,此时P3(2,0);
做出线段OA的垂直平分线,与x轴交于P4点,此时P4(1,0),
综上,满足题意的P点坐标为(-
分析:(1)将已知点坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;
(2)联立反比例与一次函数解析式,即可求出A的坐标;
(3)存在,分三种情况考虑,以O为圆心OA长为半径画弧,与x轴交于点P1,P2;以A为圆心,AO长为半径画弧,与x轴交于P3点;做出线段OA的垂直平分线,与x轴交于P4点,分别求出坐标即可.
点评:此题考查了反比例综合题,涉及的知识有:待定系数法求函数解析式,两函数交点坐标求法,等腰三角形的性质,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关题目