题目内容
已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )
A. B. C. D. 不能确定
我们给出如下定义:如图①,平面内两条直线、相交于点O,对于平面内的任意一点M,若p、q分别是点M到直线和的距离(P≥0,q≥0),称有序非负实数对是点M的距离坐标。
根据上述定义,请解答下列问题:
如图②,平面直角坐标系xoy内,直线的关系式为,直线的关系式为,M是平面直角坐标系内的点。
(1)若,求距离坐标为时,点M的坐标;
(2)若,且,利用图②,在第一象限内,求距离坐标为时,点M的坐标;
(3)若,则坐标平面内距离坐标为时,点M可以有几个位置?并用三角尺在图③画出符合条件的点M(简要说明画法)。
周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )
A. 小丽从家到达公园共用时间20分钟
B. 公园离小丽家的距离为2000米
C. 小丽在便利店时间为15分钟
D. 便利店离小丽家的距离为1000米
如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=______.
(3分)下列各组线段能构成直角三角形的一组是( )
A. 30,40,50 B. 7,12,13 C. 5,9,12 D. 3,4,6
如图,在平面直角坐标系中,A(-3,-2),B(-1,-4)
(1)直接写出:S△OAB=__ _;
(2)延长AB交y轴于P点,求P点坐标;
(3)Q点在y轴上,以A,B,O,Q为顶点的四边形面积为6,求Q点坐标.
甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶 千米.
如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.
已知x=,则x2+x+1=________.