题目内容

先化简,再求值:(
x
x-1
-
x
x2-1
x2-x
x2-2x+1
,其中x是不等式组
x+1
2
3
2
1-2x<4
的整数解.
考点:分式的化简求值,一元一次不等式组的整数解
专题:
分析:先把除法转化成乘法,再利用乘法的分配律进行化简,然后解不等式组,求出不等式组的整数解,再把所得的结果代入即可.
解答:解:(
x
x-1
-
x
x2-1
x2-x
x2-2x+1
=
x
x-1
×
(x-1)2
x(x-1)
-
x
(x+1)(x-1)
×
(x-1)2
x(x-1)
=1-
1
x+1
=
x
x+1

x+1
2
3
2
   ①
1-2x<4   ②

 由①得:x≤2,
由②得:x>-
3
2

∴原不等式组的解集是:-
3
2
<x≤2                             
∴原不等式组的整数解是:-1,0,1,2,
又∵(x-1)(x+1)x≠0∴x≠±1且x≠0
∴x=2,
∴原式=
2
2+1
=
2
3
点评:此题考查了分式的化简求值、一元一次不等式组,在化简时要注意简便方法的运用和结果的符号,注意分式有意义的条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网