题目内容

精英家教网如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为(  )
A、
3
2
B、
2
3
C、
1
2
D、
3
4
分析:根据相似三角形的判定定理求出△ABP∽△PCD,再根据相似三角形对应边的比等于相似比的平方解答.
解答:解:∵△ABC是等边三角形,
∴∠B=∠C=60°,
∵∠APB=∠PAC+∠C,∠PDC=∠PAC+∠APD,
∵∠APD=60°,
∴∠APB=∠PAC+60°,∠PDC=∠PAC+60°,
∴∠APB=∠PDC,
又∵∠B=∠C=60°,
∴△ABP∽△PCD,
AB
PC
=
BP
CD
,即
3
2
=
1
CD

∴CD=
2
3

故选B.
点评:本题考查了相似三角形的性质和判定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网