搜索
题目内容
14、如图,直线AB、CD相交于O,∠1=30°,∠2=75°,则∠EOB=
105°
.
试题答案
相关练习册答案
分析:
根据对顶角相等,即可求出∠DOB,进而即可求出∠EOB.
解答:
解:∵∠1=30°,
∴∠DOB=30°,
∵∠2=75°,
∴∠EOB=∠2+∠DOB=105°.
故答案为:105°.
点评:
本题考查了角的定义以及对顶角相等的性质,比较简单.
练习册系列答案
赢在假期期末加暑假合肥工业大学出版社系列答案
暑假作业阅读与写作好帮手长江出版社系列答案
品至教育假期复习计划期末暑假衔接系列答案
假期快乐练培优假期作业天津科学技术出版社系列答案
暑假学习与生活济南出版社系列答案
暑假作业北京教育出版社系列答案
暑假作业北京科学技术出版社系列答案
复习计划100分期末暑假衔接中原农民出版社系列答案
快乐暑假东南大学出版社系列答案
新课堂假期生活暑假生活北京教育出版社系列答案
相关题目
21、如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.
如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.
(1)图中∠AOF的余角是
(把符合条件的角都填出来).
(2)图中除直角相等外,还有相等的角,请写出三对:
①
;②
;③
.
(3)①如果∠AOD=140°.那么根据
,可得∠BOC=
度.
②如果
∠EOF=
1
5
∠AOD
,求∠EOF的度数.
25、完成推理填空:如图:直线AB、CD被EF所截,若已知AB∥CD,
求证:∠1=∠2.
请你认真完成下面填空.
证明:∵AB∥CD (已知),
∴∠1=∠
3
( 两直线平行,
同位角相等
)
又∵∠2=∠3,(
对顶角相等
)
∴∠1=∠2 (
等量代换
).
如图,直线AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度数=
33°
33°
.
如图,直线AB,CD相交于O点,EO⊥CD,垂足为O点,若∠BOE=50°,求∠AOD的度数.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案