题目内容
如图,?ABCD的对角线AC、BD相交于点O,E是BC边的中点,OE=1.那么AB=
- A.

- B.1
- C.2
- D.4
C
分析:因为四边形ABCD是平行四边形,所以OA=OC;再根据点E是BC的中点,得出OE是△ABC的中位线,由OE=1,即可求得AB=2.
解答:∵四边形ABCD是平行四边形,
∴OA=OC;
又∵点E是BC的中点,
∴OE是△ABC的中位线,
则根据三角形的中位线定理可得:AB=2OE=2×1=2.
故选C.
点评:此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线的性质:三角形的中位线平行且等于三角形第三边的一半.
分析:因为四边形ABCD是平行四边形,所以OA=OC;再根据点E是BC的中点,得出OE是△ABC的中位线,由OE=1,即可求得AB=2.
解答:∵四边形ABCD是平行四边形,
∴OA=OC;
又∵点E是BC的中点,
∴OE是△ABC的中位线,
则根据三角形的中位线定理可得:AB=2OE=2×1=2.
故选C.
点评:此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线的性质:三角形的中位线平行且等于三角形第三边的一半.
练习册系列答案
相关题目