题目内容
分析:由△ABC∽△BDE,得
=
,同理
=
,可证△CBE∽△EDG,得
=
,列等式求S2.
| BC |
| BE |
| ||
|
| ED |
| DG |
| ||
|
| BC |
| ED |
| BE |
| DG |
解答:解:△ABC和△BDE都是正三角形,所以△ABC∽△BDE,得
=
,
同理可得
=
,
可证△CBE∽△EDG,
得
=
,即
=
,
由此可得
=
,
=
,
可求得S2=3.
故本题答案为:3.
| BC |
| BE |
| ||
|
同理可得
| ED |
| DG |
| ||
|
可证△CBE∽△EDG,
得
| BC |
| ED |
| BE |
| DG |
| BC |
| BE |
| ED |
| DG |
由此可得
| ||
|
| ||
|
| ||
|
| ||
|
可求得S2=3.
故本题答案为:3.
点评:解决本题的关键是根据等边三角形的性质及相似三角形的判定与性质来得出等量关系.
练习册系列答案
相关题目