题目内容
【题目】如图,在每个小正方形边长为
的网格中,
的顶点
,
,
均在格点上,
为
边上的一点.
![]()
(Ⅰ)线段
的值为______________;
(Ⅱ)在如图所示的网格中,
是
的角平分线,在
上求一点
,使
的值最小,请用无刻度的直尺,画出
和点
,并简要说明
和点
的位置是如何找到的(不要求证明)___________.
【答案】(Ⅰ)
(Ⅱ)如图,取格点
、
,连接
与
交于点
,连接
与
交于点
.
【解析】
(Ⅰ)根据勾股定理进行计算即可.
(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为5的菱形ABEC,连接AE交BC于M,即可得出
是
的角平分线,再取点F使AF=5,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于点P,此时
的值最小.
(Ⅰ)根据勾股定理得AC=
;
故答案为:5.
(Ⅱ)如图,如图,取格点
、
,连接
与
交于点
,连接
与
交于点
,则点P即为所求.
![]()
说明:构造边长为5的菱形ABEC,连接AE交BC于M,则AM即为所求的
的角平分线,在AB上取点F,使AF=AC=5,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.
练习册系列答案
相关题目