题目内容
1.观察发现
如题27(a)图,若点A,B在直线
同侧,在直线
上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线
的对称点
,连接
,与直线
的交点就是所求的点P
再如题27(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这
点就是所求的点P,故BP+PE的最小值为 .
![]()
2.实践运用
如题27(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.
![]()
3.拓展延伸
如题27(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留
作图痕迹,不必写出作法.
![]()
1.![]()
2.![]()
3.见解析。
解析:
![]()
(2)如上图 ………………3分
作点B关于CD的对称点E,则点E正好在圆周上,连接AE交CD与一点P,则AP+BP最短。连接OA、OB、OE,
∵∠AOD=60°,B是弧AD的中点,∴∠AOB=∠DOB=30°,
∵B关于CD的对称点E,∴∠DOE=∠DOB=30°,∴∠AOE=90°,
又∵OA=OE=2,∴△OAE为等腰直角三角形,∴AE=
.………………6分
(3)找B关于AC对称点E,连DE延长交AC于P即可,如下图………………8分
练习册系列答案
相关题目