题目内容
若P(m,a),Q(,b)两点均在函数y=﹣的图象上,且﹣1<m<0,则a﹣b的值为( )
A. 正数 B. 负数 C. 零 D. 非负数
如图,已知A,D,C,F在同一直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需添加一个条件是( )
A. ∠BCA=∠F B. ∠B=∠E C. BC∥EF D. ∠A=∠EDF
当x=____时,分式 的值为0.
如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为______.
若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD的对角线长为____.
下面这几个车标中,是中心对称图形而不是轴对称图形的共有( )
A. 1 B. 2 C. 3 D. 4
如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.
(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.
(1)证明:DE=BD+CE.
(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请给出证明;若不成立,请说明理由.
(3)拓展与应用:如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
到三角形的三个顶点距离相等的点是( )
A.三条角平分线的交点
B.三条中线的交点
C.三条高的交点
D.三条边的垂直平分线的交点