题目内容
如图,某中心广场灯柱AB被钢缆CD固定,已知CB=5米,且
.
(1)求钢缆CD的长度;
(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?
∴设DB=4x,DC=5x,
∴(4x)2+25=(5x)2,
解得
∴CD=
(2)如图,过点E作EF⊥AB于点F.
∵∠EAB=120°,∴∠EAF=60°,
∴AF=AE•cos∠EAF=1.6×
∴FB=AF+AD+DB=0.8+2+
∴灯的顶端E距离地面
分析:(1)根据三角函数可求得CD;
(2)过点E作EF⊥AB于点F.由∠EAB=120°,得∠EAF=60°,再根据三角函数求得AF,从而得出答案.
点评:本题考查了解直角三角形的应用,运用三角函数可得出答案.
练习册系列答案
相关题目