题目内容
如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )
A. 三角形的稳定性 B. 两点之间线段最短
C. 两点确定一条直线 D. 垂线段最短
阅读下列材料:
年上半年出台规定,将用空气质量指数替代原有的空气污染指数.空气质量按照空气质量指数大小分为六级,相对应空气质量的六个类别,指数越大、级别越高,说明污染的情况越严重,对人体的健康危害也就越大,从一级优,二级良,三级轻度污染,四级中度污染,直至五级重度污染,六级严重污染.将空气质量达到一级优,二级良的天气定义为达标天气.
北京市环保局年月日上午向媒体通报:
年北京空气质量状况,与年相比,年,北京各项污染物同比均有所改善.据报导,年北京空气质量持续改善,年均浓度微克/立方米,同比下降,但是这一数值依旧超出国家标准.年,北京空气质量达标天数天,较年增加天,其中一级优的天数增加了天,年北京有重污染天(含严重污染天)天.其中年月至月底,北京全市浓度同比下降,空气质量达标天数较去年同期增加天,空气重污染天数同比减少天.年本市空气质量达标天数较年增加天,其中PM2.5一级优的天数增加了天.年本市重污染天(含严重污染天)数占全年总天数的,其中在月中发生重污染天,占月和月天数的,与年同期相比增加天.年北京市一级优的天数达到天,较年减少了天,但导致的重污染天(含严重污染天)数明显减少了天,从年的天下降为天.
根据以下材料解答下列问题:
()年本市空气质量达标天数为__________天;年平均浓度的国家标准限值是__________微克/立方米;(结果保留整数).
()选择统计表或统计图,将年一级优天数的情况表示出来;预估年北京市一级优天数约__________天.
()小明从报道中发现“年月至月底,北京全市浓度同比下降,空气质量达标天数较去年同期增加天,空气重污染天数同比减少天,”他由此推断“年全年的达标天数的年增长率将比年全年的达标天数的年增长率出现大幅增长,”你同意他的结论吗?并说明你的理由.
()
二次函数图象如图所示,则其解析式是( )
A. B. C. D.
如图所示,在中:
画出BC边上的高AD和中线AE.
若,,求和的度数.
点P关于x轴的对称点P1的坐标是(4,-8),则P点关于y轴的对称点P2的坐标是( ).
A. (-4,-8) B. (4,-8) C. (4,8) D. (-4,8)
如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P、点Q.
(1)求点P的坐标;
(2)若△POQ的面积为8,求k的值.
如图,已知函数与的图象相交于点,且点的纵坐标为,则关于的方程的解是________.
如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:
(1)直接写出AB所在直线的解析式、点C的坐标、a的值;
(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;
(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标.
如图,已知是射线上的任意一点,于,且,则的值等于( )