题目内容
如图所示,已知,为反比例函数图像上的两点,动点
在正半轴上运动,当线段与线段之差达到最大时,点的坐标是 .
如图1,在?ABEF中,AB=2,AF<AB,现将线段EF在直线EF上移动,在移动过程中,设线段EF的对应线段为CD,连接AD、BC.
(1)在上述移动过程中,对于四边形的说法不正确的是 B
A.面积保持不变 B.只有一个时刻为菱形
C.只有一个时刻为矩形 D.周长改变
(2)在上述移动过程中,如图2,若将△ABD沿着BD折叠得到△A′BD(点A′与点C不重合),A′B交CD于点O.
①试问A′C与BD平行吗?请说明理由;
②若以A′、D、B、C为顶点的四边形是矩形,且对角线的夹角为60°,求AD的长.
如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由.
证明: ∵AD平分∠BAC
∴∠________=∠_________(角平分线的定义)
在△ABD和△ACD中
△ABD≌△ACD( )
已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为( )
A、 30° B、 50° C、 80° D、 100°
小明和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1. 5倍.设两人出发x min后距出发点的距离为y m.图中折线段OBA表示小明在整个训练中y与x的函数关系,其中点A在x轴上,点B坐标为(2,480).
(1)点B所表示的实际意义是 ;
(2)求出AB所在直线的函数关系式;
(3)如果小刚上坡平均速度是小明上坡平均速度的一半,那么两人出发后多长时间第一次相遇?
使函数有意义的的取值范围是____________.
如图直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为( )
A.115° B.125° C.155° D.165°
如图,某工厂师傅要在一个面积为15m2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m,则裁剪后剩下的阴影部分的面积为 .
计算
(1)12-(-18)+(-7)-15 (2)|-45|+(-71)+|-5|+(-9)
(3); (4)
(5)﹣4﹣28﹣(﹣29)+(﹣24)