题目内容
如图所示,AB是⊙O的直径,D是圆上一点,
=
,连接AC,过点D作弦AC的平行线MN.
(1)证明:MN是⊙O的切线;
(2)已知AB=10,AD=6,求弦BC的长.

| AD |
| DC |
(1)证明:MN是⊙O的切线;
(2)已知AB=10,AD=6,求弦BC的长.
(1)证明:连接OD,交AC于E,如图所示,
∵
=
,∴OD⊥AC;
又∵AC∥MN,∴OD⊥MN,
所以MN是⊙O的切线.
(2)设OE=x,因AB=10,所以OA=5,ED=5-x;
又因AD=6,在Rt△OAE和Rt△DAE中,
AE2=OA2-OE2=AD2-DE2,即:
52-x2=62-(5-x)2,解得x=
;
由于AB是⊙O的直径,所以∠ACB=90°,则OD∥BC;
又AO=OB,则OE是△ABC的中位线,所以BC=2OE=2×
=
.

∵
| AD |
| DC |
又∵AC∥MN,∴OD⊥MN,
所以MN是⊙O的切线.
(2)设OE=x,因AB=10,所以OA=5,ED=5-x;
又因AD=6,在Rt△OAE和Rt△DAE中,
AE2=OA2-OE2=AD2-DE2,即:
52-x2=62-(5-x)2,解得x=
| 7 |
| 5 |
由于AB是⊙O的直径,所以∠ACB=90°,则OD∥BC;
又AO=OB,则OE是△ABC的中位线,所以BC=2OE=2×
| 7 |
| 5 |
| 14 |
| 5 |
练习册系列答案
相关题目