题目内容
| BD |
| CD |
| 3 |
| 3 |
分析:连接BD,过点D作DE⊥BC,垂足为E,由四边形ABCD是菱形,∠A=60°可知△ABD及△BCD是等边三角形,故阴影部分的面积等于△BCD的面积,再求出DE的长,由三角形的面积公式即可得出结论.
解答:
解:连接BD,过点D作DE⊥BC,垂足为E,
∵四边形ABCD是菱形,∠A=60°,
∴△ABD及△BCD是等边三角形,
∴S阴影=S△BCD=
BC•DE=
×2×2×sin60°=2×
=
cm2.
故答案为:
.
∵四边形ABCD是菱形,∠A=60°,
∴△ABD及△BCD是等边三角形,
∴S阴影=S△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
故答案为:
| 3 |
点评:本题考查的是扇形面积的计算及菱形的性质,根据题意作出辅助线,得出S阴影=S△BCD是解答此题的关键.
练习册系列答案
相关题目