题目内容
【题目】如图,已知直线y=x+4与两坐标轴分别交于A,B两点,⊙C的圆心坐标为(2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是 . ![]()
【答案】8﹣2
和8+2 ![]()
【解析】解:y=x+4,
∵当x=0时,y=4,当y=0时,x=﹣4,
∴OA=4,OB=4,
∵△ABE的边BE上的高是OA,
∴△ABE的边BE上的高是4,
∴要使△ABE的面积最大或最小,只要BE取最大值或最小值即可,
过A作⊙C的两条切线,如图,![]()
当在D点时,BE最小,即△ABE面积最小;
当在D′点时,BE最大,即△ABE面积最大;
∵x轴⊥y轴,OC为半径,
∴EE′是⊙C切线,
∵AD′是⊙C切线,
∴OE′=E′D′,
设E′O=E′D′=x,
∵AC=4+2=6,CD′=2,AD′是切线,
∴∠AD′C=90°,由勾股定理得:AD′=4
,
∴sin∠CAD′=
=
,
∴
=
,
解得:x=
,
∴BE′=4+
,BE=4﹣
,
∴△ABE的最小值是
×(4﹣
)×4=8﹣2
,
最大值是:
×(4+
)×4=8+2
,
所以答案是:8﹣2
和8+2
.
练习册系列答案
相关题目