题目内容
如图,矩形ABCD的对角线长为8cm,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH的周长为 cm。
如图,在方格纸上上建立的平面直角坐标系中,将OA绕原点O按顺时针方向旋转180°得到OA′,则点A′的坐标为( )
A.(3,1), B.(3,-1), C.(1,-3), D.(1,3)
已知(x+5)(x+n)=,则m+n的值为 .
已知反比例函数(k为常数,k≠0)的图像经过点A(2,3)。
(1)求这个函数的解析式;
(2)判断点B(-1,6),C(3,2)是否在这个函数图像上;
(3)当-3<x<-1时,求y的取值范围。
解方程
(1) (2)
一次数学测验,100名学生中有25名得了优秀,则优秀人数的频率是 。
如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.
(1)求∠EDC的度数;
(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.
如图,AB⊥AC,CD平分∠ACB,BE平分∠ABC,AG∥BC,AG⊥BG。下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=2∠ACD;④∠ABE =∠ACD,其中正确的结论是( )
A.①③ B.②④ C.①②③ D.①②③④
某公园有一座雕塑D,在北门B的正南方向,BD为100米,小树林A在北门的南偏西60°方向,荷花池C在北门B的东南方向,已知A,D,C三点在同一条直线上且BD⊥AC:
(1)分别求线段AB、BC、AC的长(结果中保留根号,下同);
(2)若有一颗银杏树E恰好位于∠BAD的平分线与BD的交点,求BE的距离.