题目内容
【题目】如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( ) ![]()
A.3:4
B.
:2 ![]()
C.
:2 ![]()
D.2
: ![]()
【答案】D
【解析】解:连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M, ∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=
S平行四边形ABCD ,
即
AF×DP=
CE×DQ,
∴AF×DP=CE×DQ,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∵∠DAB=60°,
∴∠CBN=∠DAB=60°,
∴∠BFN=∠MCB=30°,
∵AB:BC=3:2,
∴设AB=3a,BC=2a,
∵AE:EB=1:2,F是BC的中点,
∴BF=a,BE=2a,
BN=
a,BM=a,
由勾股定理得:FN=
a,CM=
a,
AF=
=
a,
CE=
=2
a,
∴
aDP=2
aDQ
∴DP:DQ=2
:
.
故选:D.![]()
连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积和平行四边形的面积得出S△DEC=S△DFA=
S平行四边形ABCD , 求出AF×DP=CE×DQ,设AB=3a,BC=2a,则BF=a,BE=2a,BN=
a,BM=a,FN=
a,CM=
a,求出AF=
a,CE=2
a,代入求出即可.
【题目】某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.
(1)完成下表
甲(kg) | 乙(kg) | 件数(件) | |
A | 5x | x | |
B | 4(40﹣x) | 40﹣x |
(2)安排生产A、B两种产品的件数有几种方案?试说明理由;
(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.