题目内容
在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是( )
A. B. C. D.
(本题满分6分)在一个袋子中,有完全相同的4张卡片,把它们分别编号为l,2,3,4
(1)从袋子中随机取两张卡片 求取出的卡片编号之和等于4的概率:
(2)先从袋子中随机取一张卡片,记该卡片的编号为a,然后将其放回,再从袋中随机取出一张卡片,级
该卡片的编号为b,利用画树状图或表格求满足a+1>b的概率
如图,在平面直角坐标系中,A(1,0),B(0,3),以AB为边在第一象限作正方形ABCD,点D在双曲线y=(k≠0)上,将正方形沿x轴负方向平移 m个单位长度后,点C恰好落在双曲线上,则m的值是 ( )
A.2 B.3 C. D.
如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C′,折痕为BE,则EC的长度是 .
如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B、C,则以下结论:
①无论x取何值,总是正数;
②a=1;
③当x=0时,;
④2AB=3AC.
其中正确的是( )
A.①② B.②③ C.③④ D.①④
如图,是⊙的直径,点是⊙上一点,与过点的切线垂直,垂足为点,直线与的延长线相交于点,弦平分∠,交于点,连接.
(1)求证:平分∠;
(2)求证:PC=PF;
(3)若,AB=14,求线段的长
计算:
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,则说明理由.
(3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,求出所有满足条件的t的值;若不存在,则说明理由.
如图,的半径为5,AB为的弦,OC⊥AB于点C,若OC=3,则AB的长为________________.