题目内容

利用“等积”计算或说理是一种很巧妙的方法,就是一个面积从两个不同的角度表示.如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的长.
作业宝
解题思路:利用勾股定理易得AB=5利用数学公式,可得到CD=2.4
请你利用上述方法解答下面问题:
(1)如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的长.
(2)如图乙,△ABC是边长为2的等边三角形,点D是BC边上的任意一点,DE⊥AB于E点,DF⊥AC于F点,求DE+DF的值
分析:①利用备用图计算等边三角形ABC高线的长度
②连接AD,利用S△ABC=S△ADB+S△ADC
解:

解:(1)∵∠C=90°,BC=5,AC=12,
∴AB=13,
∵S△ABC=BC×AC=AB×CD,
∴5×12=13•CD,
即CD=

(2)过点A作AM⊥BC,垂足为M,
∵AB=BC=2,∴BM=1,
∴AM=
即等边三角形ABC的高线长是…2′,
由S△ABC=S△ADB+S△ADCBC×=AB×DE+AC×DF,
BC=AB•DE+AC•DF
BC=AB•DE+AB•DF
BC=AB(DE+DF),
∵BC=AB=AC,
∴DE+DF=…3′.
分析:(1)先由勾股定理求出AB,再由题干的解题思路得BC×AC=AB×CD,代入数据即可得出CD;
(2)根据分析,过点A作AE⊥BC,垂足为E,再根据勾股定理得出AE,由S△ABC=S△ADB+S△ADC求出DE+DF即可.
点评:本题考查了勾股定理、三角形的面积以及等边三角形的性质,是中考的常见题型,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网