题目内容

已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.

(1)当点P在线段AB上时,求证:△APQ∽△ABC;

(2)当△PQB为等腰三角形时,求AP的长.

考点:

相似三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理.

分析:

(1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△APQ∽△ABC;

(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.

(I)当点P在线段AB上时,如题图1所示.由三角形相似(△APQ∽△ABC)关系计算AP的长;

(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.

解答:

(1)证明:∵∠A+∠APQ=90°,∠A+∠C=90°,

∴∠APQ=∠C.

在△APQ与△ABC中,

∵∠APQ=∠C,∠A=∠A,

∴△APQ∽△ABC.

(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.

∵∠BPQ为钝角,

∴当△PQB为等腰三角形时,只可能是PB=PQ.

(I)当点P在线段AB上时,如题图1所示.

由(1)可知,△APQ∽△ABC,

,即,解得:PB=

∴AP=AB﹣PB=3﹣=

(II)当点P在线段AB的延长线上时,如题图2所示.

∵BP=BQ,∴∠BQP=∠P,

∵∠BQP+∠AQB=90°,∠A+∠P=90°,

∴∠AQB=∠A,

∴BQ=AB,

∴AB=BP,点B为线段AB中点,

∴AP=2AB=2×3=6.

综上所述,当△PQB为等腰三角形时,AP的长为或6.

点评:

本题考查相似三角形及分类讨论的数学思想,难度不大.第(2)问中,当△PQB为等腰三角形时,有两种情况,需要分类讨论,避免漏解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网