题目内容

解方程:
(1)(x-2)2=25;
(2)x2+4x+3=0;
(3)2x2+4x-1=0.
分析:(1)利用直接开平方法求解,即得到x-2=±5;
(2)利用因式分解法解方程,即变形为:(x+3)(x+1)=0;
(3)把a=2,b=4,c=-1代入一元二次方程的求根公式计算即可.
解答:解:(1)方程两边开方得,x-2=±5,
∴x-2=5或x-2=-5,
∴x1=7,x2=-3.
(2)方程变形为:(x+3)(x+1)=0,
∴x+3=0或x+1=0,
∴x1=-1,x2=-3.
(3)∵a=2,b=4,c=-1,
∴b2-4ac=42-4×2×(-1)=24,
x=
-4±
24
2×2
=
-4±2
6
4
=
-2±
6
2

∴x1=
-2+
6
2
,x2=
-2-
6
2
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的求根公式:x=
-b±
b 2-4ac
2a
(b2-4ac≥0).也考查了解一元二次方程要选用适当的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网