题目内容
解方程:(1)(x-2)2=25;
(2)x2+4x+3=0;
(3)2x2+4x-1=0.
分析:(1)利用直接开平方法求解,即得到x-2=±5;
(2)利用因式分解法解方程,即变形为:(x+3)(x+1)=0;
(3)把a=2,b=4,c=-1代入一元二次方程的求根公式计算即可.
(2)利用因式分解法解方程,即变形为:(x+3)(x+1)=0;
(3)把a=2,b=4,c=-1代入一元二次方程的求根公式计算即可.
解答:解:(1)方程两边开方得,x-2=±5,
∴x-2=5或x-2=-5,
∴x1=7,x2=-3.
(2)方程变形为:(x+3)(x+1)=0,
∴x+3=0或x+1=0,
∴x1=-1,x2=-3.
(3)∵a=2,b=4,c=-1,
∴b2-4ac=42-4×2×(-1)=24,
x=
=
=
∴x1=
,x2=
.
∴x-2=5或x-2=-5,
∴x1=7,x2=-3.
(2)方程变形为:(x+3)(x+1)=0,
∴x+3=0或x+1=0,
∴x1=-1,x2=-3.
(3)∵a=2,b=4,c=-1,
∴b2-4ac=42-4×2×(-1)=24,
x=
-4±
| ||
| 2×2 |
-4±2
| ||
| 4 |
-2±
| ||
| 2 |
∴x1=
-2+
| ||
| 2 |
-2-
| ||
| 2 |
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的求根公式:x=
(b2-4ac≥0).也考查了解一元二次方程要选用适当的方法.
-b±
| ||
| 2a |
练习册系列答案
相关题目