题目内容

4.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°则∠1的度数为98度.

分析 先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.

解答 解:∵∠A=65°,∠B=75°,
∴∠C=180°-∠A-∠B=180°-65°-75°=40°;
又∵将三角形纸片的一角折叠,使点C落在△ABC外,
∴∠C′=∠C=40°,
∵∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,
∴∠3+18°+∠4+40°+40°=180°,
∴∠3+∠4=82°,
∴∠1=180°-82°=98°.
故答案为:98.

点评 本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网