题目内容
解:过点E作EF∥AB
得∠B+∠BEF=180°(
两直线平行,同旁内角互补
两直线平行,同旁内角互补
)因为AB∥CD(
已知
已知
)EF∥AB(所作)
所以EF∥CD(
平行于同一直线的两直线平行
平行于同一直线的两直线平行
)得∠
FED
FED
+∠D
D
=1800(两直线平行,同旁内角互补
两直线平行,同旁内角互补
)因此∠B+∠BEF+∠DEF+∠D=
360°
360°
.即∠B+∠BED+∠D=
360°
360°
.分析:过点E作EF∥AB,根据平行线的性质得到∠B+∠BEF=180°,且EF∥CD,则有∠FED+∠D=180°,把两等式相加得到∠B+∠BEF+∠DEF+∠D=360°,即∠B+∠BED+∠D=360°.
解答:解:∠B+∠BED+∠D等360度.理由如下:
过点E作EF∥AB,
则∠B+∠BEF=180°,
∵AB∥CD,EF∥AB,
∴EF∥CD,
∴∠FED+∠D=180°,
∴∠B+∠BEF+∠DEF+∠D=360°,
即∠B+∠BED+∠D=360°.
故答案为:两直线平行,同旁内角互补;已知;平行于同一直线的两直线平行;FED,D,两直线平行,同旁内角互补;360°;360°.
过点E作EF∥AB,
则∠B+∠BEF=180°,
∵AB∥CD,EF∥AB,
∴EF∥CD,
∴∠FED+∠D=180°,
∴∠B+∠BEF+∠DEF+∠D=360°,
即∠B+∠BED+∠D=360°.
故答案为:两直线平行,同旁内角互补;已知;平行于同一直线的两直线平行;FED,D,两直线平行,同旁内角互补;360°;360°.
点评:本题考查了平行线的性质与判断:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.
练习册系列答案
相关题目