题目内容
二次函数y=x2-2x-2,当x________时,y有________值,这个值为________;当x________时,y随x的增大而增大;当x________时,y随x的增大而减小.
=1 最小 -3 >1 <1
分析:先把解析式配成顶点式得到y=(x-1)2-3,根据二次函数的性质得到当x=1时,y有最小值,最小值为-3;当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小.
解答:y=x2-2x-2
=(x-1)2-3,
∵a=1>0,
∴当x=1时,y有最小值,最小值为-3;当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小.
故答案为=1,最小,-3,>1,<1.
点评:本题考查了二次函数的最值:二次函数y=ax2+bx+c(a≠0),当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=
时,y=
;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=
时,y=
.
分析:先把解析式配成顶点式得到y=(x-1)2-3,根据二次函数的性质得到当x=1时,y有最小值,最小值为-3;当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小.
解答:y=x2-2x-2
=(x-1)2-3,
∵a=1>0,
∴当x=1时,y有最小值,最小值为-3;当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小.
故答案为=1,最小,-3,>1,<1.
点评:本题考查了二次函数的最值:二次函数y=ax2+bx+c(a≠0),当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=
练习册系列答案
相关题目