题目内容
已知二次函数y=x2+4x+k-1.
(1)若抛物线与x轴有两个不同的交点,求k的取值范围;
(2)若抛物线的顶点在x轴上,求k的值.
(1)若抛物线与x轴有两个不同的交点,求k的取值范围;
(2)若抛物线的顶点在x轴上,求k的值.
分析:(1)根据抛物线y=x2+4x+k-1与x轴有两个不同的交点,得出b2-4ac>0,进而求出k的取值范围.
(2)根据顶点在x轴上,所以顶点的纵坐标是0,求出即可.
(2)根据顶点在x轴上,所以顶点的纵坐标是0,求出即可.
解答:解:(1)∵二次函数y=x2+4x+k-1的图象与x轴有两个交点
∴b2-4ac=42-4×1×(k-1)=20-4k>0
∴k<5,
则k的取值范围为k<5;
(2)根据题意得:
=
=0,
解得k=5.
∴b2-4ac=42-4×1×(k-1)=20-4k>0
∴k<5,
则k的取值范围为k<5;
(2)根据题意得:
| 4ac-b2 |
| 4a |
| 4(k-1)-16 |
| 4×1 |
解得k=5.
点评:此题主要考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断以及图象顶点在坐标轴上的性质,熟练掌握其性质是解题关键.
练习册系列答案
相关题目
已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是( )
A、
| ||
B、-
| ||
C、
| ||
D、-
|
| A、x1=1,x2=3 | B、x1=0,x2=3 | C、x1=-1,x2=1 | D、x1=-1,x2=3 |