题目内容
【题目】函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.
【答案】(0,3).
【解析】
令x=0,求出y的值,然后写出与y轴的交点坐标即可.
解:x=0时,y=3,
所以.图象与y轴交点的坐标是(0,3).
故答案为(0,3).
【题目】某商场为方便顾客停车,决定设计一个地下停车场,为了测得该校地下停车场的限高CD,在施工时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米).
【题目】如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=∠5,延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.
【题目】(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.
【题目】已知一个数 m 的两个不相等的平方根分别为 a+3 和 2a-15,
(1)求 a 的值.
(2)求这个数 m
【题目】已知:如图,在四边形ABCD中,给出下列论断:
①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.
以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.
答:_____________________________________________________________________.
【题目】为了解某中学男生的身高情况,随机抽取若干名男生进行身高测量,将所得到的数据整理后,画出频数分布直方图(如图),图中从左到右依次为第1,2,3,4,5组.
(1)求抽取了多少名男生测量身高?
(2)身高在哪个范围内的男生人数最多?(答出是第几小组即可)
(3)若该中学有300名男生,请估计身高为170cm及170cm以上的人数.
【题目】(1)如图1,Rt△ABC中,∠ACB=90°,点D、E在边AB上,且AD=AC,BE=BC,求∠DCE的度数;(2)如图2,在△ABC中,∠ACB=40°,点D、E在直线AB上,且AD=AC,BE=BC,则∠DCE的度数;(3)在△ABC中,∠ACB=n°(0<n<180°),点D、E在直线AB上,且AD=AC,BE=BC,求∠DCE的度数(直接写出答案,用含n的式子表示).
【题目】如图,已知∠AOB, OE平分∠AOC, OF平分∠BOC.
(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度数;
(2)猜想∠EOF与∠AOB的数量关系;
(3)若∠AOB+∠EOF=156°,则∠EOF是多少度?