题目内容
如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是
A. 1对 B. 2对 C. 3对 D. 4对
下列数中与-2互为倒数的 ( )
A. -2 B. - C. D. 2
下列各式中, 属于最简二次根式的是( )
A. B. C. D.
如图,E为等腰直角△ABC的边AB上的一点,要使AE=3,BE=1,P为AC上的动点,则PB+PE的最小值为____________.
如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得△ABC为等腰三角形,则点的个数是( )
A. 4个 B. 5个 C. 8个 D. 9个
如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足+(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合.
(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)
(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.
计算
(1)(-7)-(+5)+(-4)-(-10); (2)-1+5÷(-)×(-4)
(3) ÷(-+-) (4) (-3)2-(1-)÷(-)×[4-(-42)]
如图,直线l1,l2交于点A,直线l2与x轴、y轴分别交于点B(﹣4,0)、D(0,4),直线l1所对应的函数关系式为y=﹣2x﹣2.
(1)求点C的坐标及直线l2所对应的函数关系式;
(2)求△ABC的面积;
(3)P是线段BD上的一个动点(点P与B、D不重合).设点P的坐标为(m,n),△PBC的面积为S,写出S与m的函数关系式及自变量m的取值范围.
如图,?ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取值范围是( )
A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6